
THE JOURNAL OF CHEMICAL PHYSICS 124, 194103 �2006�
A simple, direct derivation and proof of the validity of the SLLOD
equations of motion for generalized homogeneous flows

Peter J. Daivisa�

Applied Physics, School of Applied Sciences, RMIT University, G.P.O. Box 2476 V, Melbourne,
Victoria 3001, Australia

B. D. Toddb�

Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn,
Victoria 3122, Australia

�Received 11 August 2005; accepted 13 March 2006; published online 16 May 2006�

We present a simple and direct derivation of the SLLOD equations of motion for molecular
simulations of general homogeneous flows. We show that these equations of motion �1� generate the
correct particle trajectories, �2� conserve the total thermal momentum without requiring the center
of mass to be located at the origin, and �3� exactly generate the required energy dissipation. These
equations of motion are compared with the g-SLLOD and p-SLLOD equations of motion, which are
found to be deficient. Claims that the SLLOD equations of motion are incorrect for elongational
flows are critically examined and found to be invalid. It is confirmed that the SLLOD equations are,
in general, non-Hamiltonian. We derive a Hamiltonian from which they can be obtained in the
special case of a symmetric velocity gradient tensor. In this case, it is possible to perform a
canonical transformation that results in the well-known DOLLS tensor Hamiltonian. © 2006
American Institute of Physics. �DOI: 10.1063/1.2192775�
I. INTRODUCTION

The SLLOD equations of motion1 are the acknowledged
standard set of first order linear differential equations that
enable one to perform nonequilibrium molecular dynamics
�NEMD� simulations of homogeneous planar shear flow.
They have been implemented for simple and complex fluids
and have been central to some spectacularly successful stud-
ies of the shear rheology of fluids from first principles. The
SLLOD equations of motion are usually written in the form
of two first order differential equations:

ṙi =
pi

mi
+ ri · �u ,

�1�
ṗi = Fi

� − pi · �u ,

where mi, ri, and pi represent the mass, position, and thermal
momentum, respectively, of particle i, Fi

� represents the total
force due to intermolecular potentials of all other particles
on particle i, and �u represents the velocity gradient tensor.
A thermostating mechanism is also required in order for
these equations to generate a steady state, but the thermostats
are not the subject of this paper and will therefore be omit-
ted.

Simulations of elongational flow—a much more com-
plex flow geometry—were first performed in the mid-1980s
by Heyes2 who implemented a simple NEMD technique
based on deformation of the simulation cell for a Lennard-
Jones fluid, and then later by Evans and Heyes3 who imple-
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mented the SLLOD equations of motion. Work in this field
then languished for several years because of the inherent
finiteness of the simulation caused by the contraction of at
least one of the lengths of the simulation box. This means
that more interesting and industrially relevant fluids, such as
alkanes or polymers, could not be studied due to their long
relaxation times compared with the short finite simulation
time available. In the mid-1990s Baranyai and Cummings4

and Todd and Daivis5 revived interest in this problem by
devising several new algorithms to simulate elongational
flows for longer or indefinite times. A solution to this prob-
lem was finally applied to molecular dynamics simulations
of planar elongational flow by Todd and Daivis,6 and inde-
pendently by Baranyai and Cummings,7 who implemented a
new set of periodic boundary conditions that allowed for
simulations of unrestricted duration. These boundary condi-
tions were based on the set of reproducible lattices derived
by Kraynik and Reinelt.8

At about this time, Tuckerman et al.9 suggested that the
SLLOD equations of motion were incorrect when applied to
elongational flow. They proposed an alternative set of equa-
tions given by

ṙi =
pi

mi
+ ri · �u ,

�2�
ṗi = Fi

� − pi · �u − miri · �u · �u ,

which they called the g-SLLOD �or “generalized” SLLOD�
equations. These equations differ from the original SLLOD
equations in that an additional term proportional to the par-
ticle position is included in the force equation. The additional

term is zero for shear flow but nonzero for elongation. Thus,
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g-SLLOD is the same as SLLOD for shear, but different for
elongation.

Soon after they were proposed, the g-SLLOD equations
were criticized for a number of shortcomings, including gen-
eration of an incorrect distribution function. This was fol-
lowed by a more general discussion on the formulation of
statistical mechanics for systems with non-Hamiltonian and
noncanonical equations of motion,10 and many questions re-
main unresolved. We do not intend to discuss these more
general issues here. While simulations of elongational flow
using the SLLOD equations of motion continued with more
refined algorithmic improvements11–13 and incorporated the
study of more complex molecular systems,14,15 it is clear that
some doubts remain over the validity of either the SLLOD or
g-SLLOD equations of motion for simulating elongational
flow. The debate has again been opened very recently by
Edwards and co-workers,16–18 who maintain that the
g-SLLOD equations are the correct equations to use for elon-
gational flow. They call their implementation p-SLLOD �for
“proper” SLLOD�, but, despite the fact that they were ob-
tained by different methods, the p-SLLOD and g-SLLOD
equations of motion are identical.

Our intention in writing this paper has been to remove
these doubts by presenting a simple and clear derivation of
the equations of motion for molecular simulations of flows
with homogeneous velocity gradients. In what follows we
will show that the SLLOD equations of motion are indeed
the correct equations of motion to use for all types of gener-
alized homogeneous flow. We will do this by carefully deriv-
ing the SLLOD equations for generalized flow fields in Sec.
II and showing that these equations are completely consistent
with Newton’s equations of motion. We will specifically ex-
amine planar shear and planar elongational flows. The rela-
tionship of SLLOD to the system Hamiltonian for shear and
elongational flows will then be discussed in Sec. III. In Sec.
IV we point out several crucial deficiencies in the g-SLLOD
equations which were not discussed in the previous
Comment10 on the paper in which the g-SLLOD equations of
motion were first proposed.9 Finally, in Sec. V we discuss the
periodic boundary conditions that must be used in conjunc-
tion with the SLLOD algorithm, and offer concluding re-
marks in Sec. VI.

II. DERIVATION OF THE SLLOD ALGORITHM

Our aim in this section is to demonstrate that for arbi-
trary homogeneous flows, the SLLOD equations of motion
are identical to Newton’s equations of motion for a fluid in
the presence of an external force. Let G�r , t� be an external
body force density �i.e., the force per unit volume� applied to
a fluid of infinite extent at the laboratory position r and time
t. If � is the fluid density, u is the fluid streaming velocity,
and P is the pressure tensor, then the local, instantaneous

1,19
equation of motion can be expressed as
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�J�r,t�
�t

= − � · P�r,t� − � · ���r,t�u�r,t�u�r,t�� + G�r,t� ,

�3�

where J�r , t�=��r , t�u�r , t�=�imivi��r−ri� is the local in-
stantaneous momentum density, the body force G�r , t� is
given by

G�r,t� = �
i

Fi
e��r − ri� , �4�

where Fi
e is the external force on particle i, and the index i

ranges over all molecules in the fluid. To express this in
terms of the wave vector k, one takes the Fourier transform
of Eq. �3� to obtain

�J̃�k,t�
�t

= ik · P̃�k,t� + ik · ��uu˜ �k,t�� + G̃�k,t� . �5�

Here the tilde above a quantity represents its Fourier trans-

form and J̃�k , t� represents the Fourier transform of the local
momentum density. This equation immediately shows that
the time dependence of the zero wave vector component of
the momentum density is completely determined by the ex-
ternal body force. The equation of motion for the zero wave
vector component of the momentum density is

d

dt
�

i

mivi = �
i

Fi
e, �6�

where mi is the mass of molecule i, and vi is the laboratory
frame velocity of molecule i. We now define the peculiar, or
thermal, velocity ci for molecule i, with a change of variable
such that

vi = ci + u�ri���t� = ci + ri · �u��t� ,

�
i

mici = 0,
d

dt
�

i

mici = 0, �7�

in which the first line is valid for a homogeneous velocity
gradient and line two expresses the condition that the total
thermal momentum and its derivative are both zero. It is
assumed that they are maintained at these values by the
equations of motion, i.e., that the thermal component of the
momentum is conserved.

It is assumed here that the velocity gradient is applied as
a step function at time t=0, where the Heaviside step func-
tion is defined as

��t� = �0, t � 0

1, t � 0.
� �8�

We now demonstrate that the SLLOD equations of motion
emerge naturally when we insist that the zero wave vector
momentum obeys Eq. �6� and that the peculiar or thermal
velocity satisfies Eq. �7�.

Taking the time derivative of the zero wave vector mo-

mentum gives
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d

dt
�

i

mivi =
d

dt
�

i

mi�ci + ri · �u��t��

=
d

dt
�

i

miri · �u��t� ,

where we have used the fact that the thermal momentum is
conserved to obtain the second line. Taking the derivative of
the product inside the sum, substituting Eq. �7� for the ve-
locity, and using the fact that the mean value of the thermal
momentum is zero, we obtain

d

dt
�

i

mivi = �
i
�mivi · �u��t� + miri ·

d

dt
��u��t��	

= �
i

�miri · �u · �u��t� + miri · �u��t�� . �9�

In obtaining the last line of Eq. �9� we have used the property
that the total peculiar momentum is conserved and the prod-
uct of the step function with itself is just the step function. In
an actual computer simulation, finite precision numerics and
discretization error in the solution of the ordinary differential
equations mean that conservation of thermal momentum may
not be strictly achieved, though Eq. �9� is formally correct.
This will be discussed in Sec. IV. Comparing the right hand
sides of Eqs. �6� and �9�, we see that the sum of the external
forces over all particles is given by the right hand side of Eq.
�9�. If we insist that the equations of motion are spatially
homogeneous, i.e., that they have the same functional form
for every particle in the system, then the external force acting
on each particle that is required to generate the correct zero
wave vector momentum density, subject to the condition that
the total peculiar momentum and its derivative are zero at all
times, is given by

Fi
ext = miri · �u��t� + miri · �u · �u��t� . �10�

From this one can identify the total external force per mol-
ecule as consisting of two components: an impulse force at
time t=0 at the moment the field is applied, and an additional
term that is zero before the application of the field and a
constant multiplied by the molecule’s laboratory position af-
terwards. This expression for the external force is the only
one that gives the same equations of motion for each particle
and simultaneously satisfies Eqs. �6� and �7� while specifi-
cally excluding terms of the form mici ·�u��t� whose sum is
zero and therefore cannot contribute to the zero wave vector
component of the momentum density or the total external
force.

In Newtonian form, the full equations of motion are

Fi = mi
dvi

dt
, �11�

where the total force on molecule i is the sum of internal
�intermolecular� and external forces given by

Fi = Fi
� + Fi

ext. �12�
The external force is given by Eq. �10�.
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The SLLOD equations of motion are not usually ex-
pressed in the Newtonian form given above. Instead, a
change of variable is performed, in which we define the pe-
culiar or thermal velocity by

ṙi = ci + ri · �u��t� . �13�

If we now substitute this expression for the velocity into
Newton’s second law �Eq. �11��, and then insert the forces
given by Eq. �12� into the left hand side of Eq. �11� and make
the peculiar velocity the subject of the equation, we obtain a
first order differential equation for the peculiar velocity,

miċi = Fi
� − mici · �u��t� . �14�

Equations �13� and �14� are just the first order version of
the SLLOD equations of motion, identical to Eq. �1� when
we define the peculiar momentum as pi=mici. Normally
these are written without the explicit inclusion of the step
function, which we have included here for greater clarity. It
is important to appreciate that we have solved for the labo-
ratory position and the thermal velocity. Both of these quan-
tities are calculated relative to the laboratory reference
frame, since the definition of ci exclusively involves quanti-
ties referred to the laboratory frame. If we had used a moving
reference frame, the streaming velocity would be zero. This
is clearly not the case in the SLLOD equations of motion,
which explicitly include a nonzero streaming velocity.

We now consider two specific types of flow: planar shear
and planar elongational. If the desired velocity gradient cor-
responds to simple planar shear with flow in the x direction
and gradient in the y direction, then we have

�u = 
0 0 0

�̇ 0 0

0 0 0
� , �15�

where �̇=�ux /�y is the magnitude of the velocity gradient.
For planar shear flow �u ·�u=0 and so the external force
described by Eq. �10� only consists of the impulse term. The
flow is generated by the impulse at t=0 and, because the
system is infinite in extent �the use of periodic boundary
conditions ensures this�, the impulse will result in a persis-
tent zero wave vector momentum current for all times there-
after without the need for a constant driving external field at
t�0. This must necessarily be the case because there is no
zero wave vector acceleration of the system of particles in
planar shear flow after the impulse, as shown by Eq. �9�.
�Equation �3� shows that we do not need to consider the
effect of stresses, because they occur at first order, not zero
order, in wave vector.�

In the case of planar elongational flow, with expansion in
the x direction, contraction in the y direction, and no field in
the z direction, the velocity gradient tensor is

�u = 
�̇ 0 0

0 − �̇ 0

0 0 0
� , �16�
in which case
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�u · �u = 
�̇2 0 0

0 �̇2 0

0 0 0
� , �17�

where �̇ is the elongation rate. In this case the external force
described by Eq. �10� has the initial impulse, as with planar
shear flow, but in addition has a term proportional to the
laboratory position of the molecule. In particular, the form
for the individual components is

Fi,x
ext = mi�̇xi��t� + mi�̇

2xi��t� ,

Fi,y
ext = − mi�̇yi��t� + mi�̇

2yi��t� , �18�

Fi,z
ext = 0.

For planar elongation an impulse force alone is insufficient
to sustain an indefinite flow. An additional external force
proportional to the laboratory position must apply at all times
to every molecule. The signature of this external force is that
it must induce a zero wave vector component of the accel-
eration of the fluid. This acceleration is observed as the hy-
perbolic streaming velocity profile, in which both the mag-
nitude and direction of the velocity of a small element of
fluid continually change with time, unlike in shear flow for
which they remain constant.

It is important to appreciate that Eqs. �11� and �14� are
equivalent ways of expressing Newton’s second law and are
completely general for homogeneous flows. The g-SLLOD
equations of motion instead introduce an additional term,
−miri ·�u ·�u, into Eq. �14�. This in turn actually negates the
influence of the necessary nonimpulsive external force re-
quired to sustain an elongational flow indefinitely. The ob-
servation that simulations using g-SLLOD do, in fact, con-
tinue to flow is a consequence of implementing them with a
coupled thermostat and boundary conditions that are consis-
tent with the desired flow through the definition of the pecu-
liar velocity, Eq. �13�, and the evolution of the periodic
boundaries, which is also essentially given by Eq. �13� �see
Sec. V�. As we will show later, the boundary conditions do
not exert a force on the particles unless their streaming mo-
tion is incompatible with the motion of the boundaries. In
addition, the thermostat interprets any deviations from the
assumed velocity profile as heat and compensates by apply-
ing an additional force to the molecules, which in turn serves
to sustain the velocity gradient specified by the definition of
the peculiar velocity �Eq. �13��. Thus, it is possible to induce
the desired flow, even when the equations of motion are in-
consistent with the flow, as they are in the case of g-SLLOD.

III. RELATIONSHIP TO HAMILTONIAN MECHANICS

The question now arises: can these equations be derived
from a Hamiltonian, and what relationship do they have to
the Hamiltonian description? If a Hamiltonian containing a
standard potential energy function exists, then we should be
able to write the external force on the right hand side of the
Newtonian form of the SLLOD algorithm �Eq. �10�� as the
gradient of a potential. This can immediately be checked by

calculating the curl of the external force, since a potential
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energy exists only if �	Fe=0. Examining the external force
terms, we see that if the impulse force can be expressed as
the gradient of a potential, it must satisfy

�

�ri
	 ri · �u = �

i j k

�

�xi

�

�yi

�

�zi

ri · �ux ri · �uy ri · �uz

�
= i �uz

�y
−

�uy

�z
� − j �uz

�x
−

�ux

�z
�

+ k �uy

�x
−

�ux

�y
� = 0. �19�

This condition is clearly satisfied if the velocity gradient ten-
sor is symmetric. Thus, for planar shear it is not satisfied,
whereas for planar elongational flow it is. For planar elonga-
tional flow the potential energy associated with the impulsive
external force is

V = −� F · dri = − ��t�mi� ri · �u · dri

= −
mi�̇

2
�xi

2 − yi
2���t� . �20�

For the nonimpulsive external force term we see that

�

�ri
	 ri · �u · �u

= �
i j k

�

�xi

�

�yi

�

�zi

ri · �u · �ux ri · �u · �uy ri · �u · �uz

�
= i �u

�y
· �uz −

�u

�z
· �uy� − j �u

�x
· �uz −

�u

�z
· �ux�

+ k �u

�x
· �uy −

�u

�y
· �ux� , �21�

which is zero if the velocity gradient tensor is symmetric.
This condition is satisfied for all types of elongational flow,
and it is irrelevant for shear flow, since the nonimpulsive
external force term is then zero.

Therefore, the potential energy corresponding to this part
of the external force is zero for shear flow, while for planar
elongational flow it is

V = −� F · dri = − ��t�mi� ri · �u · �u · dri

= −
mi�̇

2

2
�xi

2 − yi
2���t� . �22�

Thus we see that a Hamiltonian description for the SLLOD
equations of motion does not exist for planar shear flow, but
does exist for planar elongational flow. It will, in fact, exist
for all types of elongational flow.

The general form of the Hamiltonian for flows with a

symmetric velocity gradient tensor is
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H�rN,p�N,t� = ��rN� + K�p�N� + V�rN,t� , �23�

where � is the intermolecular potential energy, K is the ki-
netic energy, and V is the potential energy due to the external
field, which is given by

V�rN,t� = −
1

2 � mi�ri · �u�2��t� −
1

2 � miri · �u · ri��t� .

�24�

Here, the conjugate momentum p� is related to the velocity
by the usual definition from classical mechanics, pi�
=�L /�ṙi=miṙ, consistent with the system Lagrangian. When
this Hamiltonian is used with Hamilton’s equations of mo-
tion, the resulting equations of motion are the same as Eq.
�12�, except that the velocity gradient in the impulse term of
the external force is now only the symmetric part of the
velocity gradient. This is totally consistent with our previous
discussion in which we found that a Hamiltonian only exists
for flows with a symmetric velocity gradient tensor. Further,
it is easily shown that if we perform a canonical transforma-
tion such that

qi = ri,

�25�
pi = p� − miri · �u��t� ,

with a generating function for the canonical transformation20

given by

F�rN,pN,t� = � ri · pi +
1

2 � mi�ri · �u�2��t� , �26�

then we obtain the Hamiltonian in terms of the new variables
as

HDOLLS�qN,pN,t� = H +
�F

�t

= ��qN� + � pi
2

2mi
+ � qi · �u · pi��t� ,

�27�

which is the DOLLS tensor Hamiltonian.21 This results in the
well-known DOLLS equations of motion, which, we now
see can only be applied for symmetric velocity gradients, in
which case it is equivalent to the SLLOD algorithm. An im-
portant point here is that the explicit time dependence of the
Hamiltonian �which has been neglected by Baig et al.17�
must be taken into account in order to obtain correct results.

IV. MOMENTUM CONSERVATION AND ENERGY
DISSIPATION

The SLLOD equations of motion conserve the total ther-
mal momentum of the system. This is easily seen by sum-
ming over all molecules in Eq. �14� and is valid for any type
of homogeneous flow, including shear and elongation. Note
that this is a separate issue to the phenomenon observed by
Todd and Daivis,12 in which they found that numerical simu-
lations of elongational flow via the SLLOD algorithm exhib-
ited an inherent instability in the total thermal momentum

which was nevertheless controllable. The source of this in-
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stability is due entirely to finite precision numerics and does
not result from a flaw in the SLLOD algorithm, as has been
asserted recently by Baig et al.17 We have previously dem-
onstrated that the effect of uncorrected numerical error in the
thermal momentum can be analyzed for the case of planar
elongational flow as follows. The equation of motion for the
thermal momentum given by the SLLOD equations of mo-

tion is Ṗ=−P ·�u, where P=�imici is the total peculiar mo-
mentum of the system. If we allow the initial value of the
total thermal momentum to be nonzero, contradicting the ex-
act equations of motion, but allowing for a small numerical
error, the equation of motion for the thermal momentum can
be solved for each Cartesian component with Eq. �16� to
give12

Px�t� = Px�0�exp�− �̇t� ,

�28�
Py�t� = Py�0�exp��̇t� .

Clearly if we set the components of the initial thermal mo-
mentum identically equal to zero and we solve the equations
of motion without introducing any numerical error, the evo-
lution of the system will always result in zero total thermal
momentum at all times. Since the complete elimination of
discretization and truncation errors in numerical computation
is impossible there will always be numerical errors in the
momentum. Because any nonzero error in total initial mo-
mentum in the y direction grows exponentially in time, ulti-
mately this can cause serious problems for the simulation if
it remains uncorrected. Fortunately, this numerical error is
easily corrected by periodically subtracting the mean y com-
ponent of the peculiar momentum from each particle, by
adding proportional feedback to correct the momentum, or
by adding a constraint to prevent it from growing.12 Interest-
ingly, it has recently been suggested22,23 that fluctuations
may be an inherently chaotic source of instability for elon-
gational flows in general, and work is continuing to explore
this microscopic connection. No such problem will occur in
the x direction because now the total momentum is forced to
converge exponentially to zero. We have previously also
shown that no such problem occurs in shear flow, which
explains why numerical simulations of planar shear are al-
ways stable.12

The g-SLLOD equations differ from the SLLOD equa-
tions only in the force equation, so that the equations of
motion for the first moment of the positions Q=�imiri and
the total peculiar momentum P=�ipi are

Q̇ = P + Q · �u ,

�29�
Ṗ = − P · �u − Q · �u · �u .

Using the first of these equations, the second can be written
as

Ṗ = − Q̇ · �u , �30�
which can be directly integrated to give
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P�t� = P�0� − �Q�t� − Q�0�� · �u . �31�

The initial value problem can be solved explicitly by taking
the derivative of the first line of Eq. �29�, substituting the
second line of Eq. �29� into it, and integrating twice with
respect to time, giving

Q�t� = Q�0� + Q̇�0�t = Q�0� + Q�0� · �ut , �32�

which results in the expression for the total thermal momen-
tum derived by Baig et al.17

P�t� = P�0� − �P�0� + Q�0� · �u� · �ut . �33�

For shear flow �u ·�u=0 so the equations of motion con-
serve thermal momentum. However, for elongational flow,
�u ·�u�0 and so the equations of motion will not conserve
thermal momentum instantaneously unless the center of mass
is located at the origin, �imiri=0. This condition can be ar-
bitrarily chosen as an initial condition for the simulation, but
it is not physically required in the same way that the thermal
momentum must satisfy P=�imici=0. The requirement of a
special choice for the origin in the g-SLLOD algorithm vio-
lates the property of translational invariance that a periodic
system would be expected to possess. This requirement is not
shared by the SLLOD equations of motion.

g-SLLOD has another serious problem associated with
it, namely, it generates the wrong energy dissipation. The
aim of a synthetic-force nonequilibrium molecular dynamics
algorithm is to replace the boundary conditions that are re-
sponsible for generating macroscopic fluxes with synthetic
forces in the equations of motion. These synthetic forces
should have, as their sole result, the production of the appro-
priate dissipative flux, so that the link with linear response
theory becomes explicit and analytically tractable. Therefore,
it is crucial that the rate of change of internal energy should
only consist of a bilinear expression involving the appropri-
ate flux and synthetic force.

The SLLOD equations of motion are known to generate
the correct rate of energy dissipation. This is obtained by
taking the time derivative of the total internal energy E
=�i1/2mici

2+1/2�i� j�ij�rij�, using the equations of motion
and standard manipulations, and is found to be1,24

ĖSLLOD = − VPT:�u

= �− VPxy�̇ planar shear

− V�̇�Pxx − Pyy� planar elongation,
� �34�

where P is the pressure tensor. The rate of change of the
internal energy given by the g-SLLOD equations of motion
is

Ėg-SLLOD = − VPT:�u − �
i

miciri� · �u:�u . �35�

This gives the same dissipation rate as the SLLOD equations
of motion for shear, but for planar elongation it is incorrect,
since it is known from hydrodynamics that the rate of inter-
nal energy generation by viscous processes is given by
−VPT :�u for all flows. While the extra term in Eq. �35�
might become negligible in the thermodynamic limit, Eq.

�35� has the disadvantage that the energy balance equation is
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no longer satisfied exactly and instantaneously, as it is when
the SLLOD equations of motion are applied. This means that
the work done by the external field will not correspond ex-
actly to the energy removed by the internal energy constraint
force in a constant internal energy simulation. Furthermore,
because the application of linear response theory requires
that the correct dissipation be generated by the equations of
motion, the g-SLLOD equations of motion will not give the
correct linear response for small systems and the magnitude
of the error will not be easy to quantify.

V. PERIODIC BOUNDARY CONDITIONS

The first simulations of elongational flow were per-
formed by direct deformation of the simulation box.2 The
introduction of equations of motion that allowed a flow to be
induced by an explicit external force, rather than by direct
deformation of the simulation box, had major benefits. One
of these was that the nonequilibrium response of the system
could be analyzed mathematically using linear and nonlinear
response theories.1 It follows from this that if we want our
mathematical analysis to be correct, no other external forces
than those explicitly imposed on the system should be in-
cluded. Therefore, it is essential that the periodic boundary
conditions should not impose a force on the system. The way
to achieve this is to allow the simulation box to evolve ac-
cording to the kinematics of the induced flow. Let L repre-
sent one of the vectors defining the vertices of the simulation
box. If L is to evolve with the flow, it must obey

L̇ = L · �u��t� , �36�

and the acceleration of the box vertex must therefore be
given by

L̈ = L · �u · �u��t� + L · �u��t� . �37�

This is identical to the acceleration of a noninteracting par-
ticle with no thermal momentum given by the SLLOD equa-
tions of motion, as can easily be shown by setting the pecu-
liar velocity to zero and then taking the time derivative of
Eq. �7�. However, it is not consistent with the acceleration
calculated from the g-SLLOD equations of motion, r̈i

=ri ·�u��t� which lacks the first term of Eq. �37�. Thus, we
observe that if these boundary conditions were applied in
conjunction with the g-SLLOD equations of motion �in the
absence of a thermostat�, they would be inconsistent with the
flow induced by those equations of motion. In the presence
of a thermostat, the thermostat itself would apply a force on
the particles to induce the desired flow unless a profile unbi-
ased thermostat1 was used. We will consider a simple ex-
ample that exhibits the problem explicitly. Imagine a nonin-
teracting particle with an initial velocity of zero. At time t
=0, the external field is applied. With properly formulated
equations of motion, this particle’s motion at subsequent
times should be solely determined by the external force that
generates the flow. In this case, the equation of motion given

by the SLLOD equations of motion would be
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mi
d2ri

dt2 = miri · �u��t� + miri · �u · �u��t�

=
d

dt
�miri · �u��t�� . �38�

Integrating this gives the expected particle velocity, u�t�
=ri ·�u��t�. As shown by Tuckerman et al.9 �their Eq. �22��,
the g-SLLOD equations of motion lack the second term in
the external force. In g-SLLOD dynamics, the external force
only provides an initial acceleration through the delta func-
tion term, but it is zero thereafter, and the trajectory of a
noninteracting particle with zero peculiar momentum will
then be a simple straight line by Newton’s first law. This
means that the particle trajectory generated by the g-SLLOD
equations of motion will be incorrect if this term is nonzero.
Specifically, the g-SLLOD equations of motion generate in-
correct trajectories for extensional flows. We must then ask,
what provides the force required to generate the flow ob-
served in simulations of elongational flow performed with
the g-SLLOD equations of motion? The answer must be that
it is provided by the periodic boundary conditions and the
thermostat. This is unsatisfactory, since the correct applica-
tion of response theory requires that the flow should be gen-
erated by a force that can be expressed in analytical form and
appears explicitly in the equations of motion.

VI. CONCLUSIONS

The discussion that we have presented makes it clear
that the SLLOD equations of motion correctly generate the
desired zero wave vector velocity gradient and particle tra-
jectories in a homogeneous flow simulation. We have also
explicitly confirmed the often-stated fact that, in their most
general form, these equations of motion cannot be derived
from a Hamiltonian, due to the lack of a suitable potential
function to represent the effect of the external field on the
particles. It might be thought that the introduction of a
velocity-dependent generalized potential might make it pos-
sible to place these equations in Hamiltonian form.16 How-
ever, since the external force terms in Eq. �10� only depend
on the positions, this is clearly not an option. The only alter-
native seems to be to introduce a generalized force into the
Lagrangian equations of motion, resulting in noncanonical
Hamiltonian equations of motion, nullifying the advantages
of a Hamiltonian description.

Finally, it is appropriate to consider the distribution func-
tion and nonlinear response that result from the application
of SLLOD dynamics to a system of particles. The form of
Eq. �10� makes it clear that the first effect of propagation
with the SLLOD equations of motion is to instantaneously
add a streaming component to the particle velocities so as to
create an initial local equilibrium distribution function. This
initial condition is often used in theoretical treatments of
nonequilibrium statistical mechanics.25 The procedure used
by Yamada and Kawasaki25 to obtain the nonlinear shear
response was to begin with an initial local equilibrium dis-
tribution function and then propagate the system with New-
ton’s equations of motion. In the case of planar shear flow,

this means that the total force on each atom is simply the
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sum of the intermolecular forces acting on that particle, since
the second term in Eq. �10� is zero for shear flow. For elon-
gational flow the situation is different, and the second term in
the external force must be included, therefore the Liouville
operator and propagator must be modified. This immediately
invalidates the recent extension of Yamada and Kawasaki’s
nonlinear response theory to general flows attempted by Ed-
wards et al.26 Evans and Morriss27 have previously demon-
strated the equivalence of the nonlinear response of a system
in planar shear flow under SLLOD dynamics and that of a
system with an initial local equilibrium distribution function
propagated with Newtonian dynamics, as derived by Yamada
and Kawasaki.25 Since it has already been shown that
SLLOD dynamics also generates the correct velocity gradi-
ent for elongational flows, it is obvious that propagation of
an initial equilibrium distribution function with the SLLOD
propagator will generate the correct nonequilibrium distribu-
tion function for any homogeneous flow. In fact, the gener-
alization of nonlinear response theory to a general, homoge-
neous velocity gradient tensor has already been tested for
steady and oscillatory elongational flow with excellent
results.24,28

VII. COMMENTS ON “A VALIDATION OF THE
p-SLLOD EQUATIONS OF MOTION FOR
HOMOGENEOUS STEADY-STATE FLOWS”29

The following article by Edwards et al.29 presents criti-
cisms of our article and states the arguments in support of
their view that the p-SLLOD equations of motion are pref-
erable to the SLLOD equations of motion for molecular dy-
namics simulations of flows with homogeneous velocity gra-
dients. We would like to add the following comments in
response to their article.

�1� In their Sec. I, Edwards et al. state that the NEMD
algorithm based on the SLLOD equations of motion is
“artificial” and that the p-SLLOD algorithm is “natu-
ral” because the former contains an external force and
the latter does not. While we agree that NEMD algo-
rithms do contain artificial forces �in the sense that they
do not exist in nature�, we disagree with the implication
that this invalidates these algorithms. On the contrary,
we believe that the ability to generate the desired non-
equilibrium flux with terms that appear explicitly in the
equations of motion is a great advantage, because it
allows us to simulate systems with nonequilibrium
fluxes in translationally invariant, homogeneous sys-
tems with periodic boundary conditions. In addition,
the existence of explicit terms in the equations of mo-
tion that generate the flow allows us to apply linear and
nonlinear response theories, providing the most con-
vincing validation of the equations of motion, as shown
long ago by Evans and Morriss.27

�2� Edwards et al. state further that the only forces acting
on the particles in the central simulation box in a
p-SLLOD algorithm simulation are intermolecular
forces, which sum to zero, but that this sum is nonzero
for all other simulation boxes. This cannot possibly be

true in a system with periodic boundary conditions, be-
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cause the intermolecular forces are functions only of
the positions, which are periodic. This periodicity en-
sures that the sum of the intermolecular forces must be
zero for every image of the central simulation box.

�3� The p-SLLOD equations of motion are identical to the
g-SLLOD equations, which were proposed in 1997 by
Tuckerman et al.9 The claim by Edwards et al. that the
p-SLLOD equations of motion do not contain an exter-
nal force is in disagreement with the analysis of Tuck-
erman et al., who have shown that there is an impulse
force at the time the velocity gradient is applied �usu-
ally taken as t=0� in the g-SLLOD equations of motion
when they are expressed in terms of the laboratory
frame acceleration.

�4� In their Sec. III, Edwards et al. make a spurious com-
parison between experimental elongational flow, which
is obviously driven by boundary conditions, and
NEMD simulations of homogeneous flow in an infinite
periodic system with the SLLOD equations of motion.
Our view is that in NEMD simulations using the
SLLOD equations of motion on an infinitely periodic
system, the total boundary stress on the simulation box
is zero if the periodic boundary conditions are formu-
lated correctly �so as to evolve with the flow� and the
time derivative of the zero wave vector momentum
density can only be nonzero if there is an applied body
force. This is why we are able to use Eq. �5� to analyze
the flow. In the case of homogeneous shear, only a delta
function force is required, whereas for elongational
flow, an additional force is needed, as we have shown
in our Eq. �10�. This surprising situation occurs because
the zero wave vector momentum of the system never
decays once it has been established in an infinite sys-
tem undergoing planar shear.1 The same is not true for
elongational flows.

�5� The claim by Edwards et al. in their Sec. III following
Eq. �10� that our derivation of the expression for the
external force acting on each particle is not rigorous
appears to be based on a misunderstanding of our deri-
vation. We use two physical assumptions to arrive at
our expression for the external force. First, we express
the total external force on the system of particles in
terms of the desired independent variables, the position,
and the peculiar momentum and then eliminate terms
whose sum is equal to zero because they cannot con-
tribute to the external force. This gives our Eq. �9�,
which is the sum of the external forces on each particle.
Second, we insist that the equations of motion are the
same for every particle in the system. This gives our
Eq. �10�. The discussion by Edwards et al. misinter-
prets our derivation by implying that a term that sums
to zero and thus contributes a total external force of
zero at all times should be included in the external
force for each particle.

�6� Equation �III.11� of Edwards et al. incorrectly identifies
the external force on each particle as the mass times the
time derivative of the streaming component of the ve-

locity of that particle.
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�7� The analysis following Eq. �III.13� of Edwards et al. is
misleading, because the velocity that is desired in this
instance is the one that exists immediately after the
application of the velocity gradient. This means we
must take the limit as � approaches zero in their Eq.
�III.13�, giving the expected result that the velocities
are incremented by the local streaming velocity.

�8� The analysis of the energy balance for the SLLOD
equations of motion in Sec. VI of their paper contains
the misleading statement that the effect of the external
force has been neglected in arriving at their Eq. �VI.4�.
This is clearly incorrect because the full form of the
SLLOD equations of motion �their Eq. �VI.2�� has been
used to obtain it. Our view is that since the SLLOD
equations of motion give the desired rate of work by
the velocity gradient, shown by their Eq. �VI.3�, this is
simply a further argument in favor of the SLLOD equa-
tions and against the p-SLLOD equations of motion,
which do not share this property.

�9� Edwards et al. state in their Sec. VII that “the Yamada
and Kawasaki derivation was performed for a general,
homogeneous steady-state flow field.” However, Ya-
mada and Kawasaki make no claims that their deriva-
tion is valid for general homogeneous flows, and their
specific results are all for planar shear flow.

We believe that we have addressed most of the main
points of difference between our two points of view, but
there remain many detailed points on which we have re-
frained from commenting.
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